miércoles, 24 de septiembre de 2014

JUPITER


       Jupiter is the fifth planet from the Sun and the largest planet in the Solar System. It is a gas giant with mass one-thousandth of that of the Sun but is two and a half times the mass of all the other planets in the
Solar System combined. Jupiter is classified as a gas giant along with Saturn, Uranus and Neptune. Together, these four planets are sometimes referred to as the Jovian or outer planets. The planet was known by
astronomers of ancient times. When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, bright enough to cast shadows, and making it on average the third-brightest object in the night sky after the Moon and Venus. Its equatorial radius is equivalent 11.209 Earths.
       Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, although helium only comprises about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other gas giants, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet's shape is that of an oblate spheroid. The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. There are also at least 67 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.
       Jupiter's upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume or fraction of gas molecules. Since a helium atom has about four times as much mass as a hydrogen atom, the composition changes when described as the proportion of mass contributed by different atoms. Thus, the atmosphere is approximately 75% hydrogen and 24% helium by mass, with the remaining one percent of the mass consisting of other elements. The interior contains denser materials such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.
       Jupiter is thought to consist of a dense core with a mixture of elements, a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. Beyond this basic outline, there is still considerable uncertainty. The core is often described as rocky, but its detailed composition is unknown. In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times the Earth's mass or roughly 4%–14% of the total mass of Jupiter. The presence of a core during at least part of Jupiter's history is suggested by models of planetary formation involving initial formation of a rocky or icy core that is massive enough to collect its bulk of hydrogen and helium from the protosolar nebula. Assuming it did exist, it may have shrunk as convection currents of hot liquid metallic hydrogen mixed with the molten core and carried its contents to higher levels in the planetary interior. A core may now be entirely absent, because gravitational measurements are not yet precise enough to rule that possibility out entirely.
      Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, rather than ice as with Saturn's rings. The main ring is probably made of material ejected from the satellites Adrastea and Metis. Material that would normally fall back to the moon is pulled into Jupiter because of its strong gravitational influence. The orbit of the material veers towards Jupiter and new material is added by additional impacts. In a similar way, the moons Thebe and Amalthea probably produce the two distinct components of the dusty gossamer ring. There is also evidence of a rocky ring strung along Amalthea's orbit which may consist of collisional debris from that moon.

0 comentarios:

Publicar un comentario