miércoles, 24 de septiembre de 2014

SOLAR SYSTEM

       The Solar System comprises the sun and the objects that orbit it, whether they orbit it directly or by orbiting other objects that orbit it directly.Of those objects that orbit the Sun directly, the largest eight are the planets that form the planetary system around it, while the remainder are significantly smaller objects, such as comets and asteroids.



       The Solar System also contains regions populated by smaller objects. The asteroid belt, which lies between Mars and Jupiter, mostly contains objects composed, like the terrestrial planets, of rock and metal. Beyond Neptune's orbit lie theKuiper belt and scattered disc, linked populations of trans-Neptunian objects composed mostly of ices. Within these populations are several dozen to more than ten thousand objects that may be large enough to have been rounded by their own gravity.


       For many thousands of years, humanity, with a few notable exceptions, did not recognize the existence of the Solar System. People believed Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Although the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos, Nicolaus Copernicus was the first to develop a mathematically predictive heliocentric system. In the 17th-century, Galileo Galilei, Johannes Kepler and Isaac Newton, developed an understanding of physics that led to the gradual acceptance of the idea that Earth moves around the Sun and that the planets are governed by the same physical laws that governed Earth. The invention of the telescope led to the discovery of further planets and moons. Improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena, such as mountains, craters, seasonal meteorological phenomena, such as clouds, dust storms and ice caps on the other planets.

                                                                       The Sun

       The Sun is the only star center of the Solar System; therefore, it is the closest star to Earth and the sun shine more apparent. Its presence or absence in the Earth's sky respectively determine the day and night. The energy radiated by the sun is used by photosynthetic beings, which are the basis of the food chain, and is therefore the main source of life energy. It also provides the energy that keeps running climate processes.

                                                                   Inner Planets

       The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids. Composed mainly of silicates and metals, the objects of the inner Solar System are relatively close to the Sun; the radius of this entire region is shorter than the distance between the orbits of Jupiter and Saturn.

       The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and no ring systems. They are composed largely of refractory minerals, such as the silicates, which form their crusts and mantles, and metals, such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather; all have impact craters and tectonic surface features, such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets that are closer to the Sun than Earth is.


       The innner planets are:

  • Mercury
  • Venus 
  • Earth 
  • Mars

                                                                Outer Planets

       The outer region of the Solar System is home to the gas giants and their large moons. Many short-period comets, including the centaurs, also orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System contain a higher proportion of volatiles (such as water, ammonia and methane) than the rocky denizens of the inner Solar System because the colder temperatures allow these compounds to remain solid.
     
       The outer planets are:

  • Jupiter
  • Saturn
  • Neptune
  • Uranus

MERCURY

       Mercury is the smallest and closest to the Sun of the eight planets in the Solar System, with an orbital period of about 88 Earth days. Seen from Earth, it appears to move around its orbit in about 116 days, which is much faster than any other planet. It has no known natural satellites.
     Mercury is one of four terrestrial planets in the Solar System, and is a rocky body like Earth. It is the smallest planet in the Solar System, with an equatorial radius of 2,439.7 kilometers (1,516.0 mi). Mercury is also smaller than the largest natural satellites in the Solar System, Ganymede and Titan.
       Mercury is easily seen from the southern hemisphere of Earth from the Northern Hemisphere ; This is because the maximum possible elongation west of the Sun always occur when it is autumn in the southern hemisphere , while the maximum elongation that occurs when it is winter in the northern hemisphere. In both cases , the angle Mercury strikes maximally with the ecliptic , allowing rise several hours before the Sun and is not set until several hours after sunset in the countries situated in temperate latitudes of the Southern Hemisphere , including Chile, Argentina and new Zealand. By contrast, in temperate northern latitudes, Mercury is never above the horizon at about midnight. Mercury can, like many other planets and bright stars, be seen during a solar eclipse.
       

VENUS

       Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. It has no natural satellite. After the Moon, it is the brightest natural object in the night sky. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°.
       Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, gravity, and bulk composition (Venus is both the closest planet to Earth and the planet closest in size to Earth). However, it has also been shown to be radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth's. With a mean surface temperature of 462 °C (863 °F), Venus is by far the hottest planet in the Solar System. Venus may have possessed oceans in the past, but these would have vaporized as the temperature rose.

       Venus is one of the four terrestrial planets in the Solar System, meaning that, like Earth, it is a rocky body. In size and mass, it is similar to Earth, and is often described as Earth's "sister" or "twin". The diameter of Venus is 12,092 km (only 650 km less than Earth's) and its mass is 81.5% of Earth's.
       The absence of evidence of lava flow accompanying any of the visible caldera remains an enigma. The planet has few impact craters, demonstrating the surface is relatively young, approximately 300–600 million years old. In addition to the impact craters, mountains, and valleys commonly found on rocky planets, Venus has some unique surface features.
       Without seismic data or knowledge of its moment of inertia, little direct information is available about the internal structure and geochemistry of Venus. The similarity in size and density between Venus and Earth suggests they share a similar internal structure: a core, mantle, and crust. Like that of Earth, the Venusian core is at least partially liquid because the two planets have been cooling at about the same rate.
        Venus has an extremely dense atmosphere, which consists mainly of carbon dioxide and a small amount of nitrogen. The atmospheric mass is 93 times that of Earth's atmosphere, whereas the pressure at the planet's surface is about 92 times that at Earth's surface—a pressure equivalent to that at a depth of nearly 1 kilometer under Earth's oceans.
        Venus is always brighter than any star (apart from the Sun). The greatest luminosity occurs during crescent phase when it is near Earth. The planet is bright enough to be seen in a mid-day clear sky, and it can be easy to see when the Sun is low on the horizon. As an inferior planet, it always lies within about 47° of the Sun.

EARTH

       Earth, also known as the world, Terra, or Gaia, is the third planet from the Sun, the densest planet in the Solar System, the largest of the Solar System's four terrestrial planets, and the only celestial body known to accommodate life. It is home to about 8.74 million species. Its equatorial radius is of 6378.1 km. There are billions of humans who depend upon its biosphere and minerals.The moon is its unique natural satellite.
       Earth's lithosphere is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. Over 70% percent of Earth's surface is covered with water, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. The planet's interior remains active, with a solid iron inner core, a liquid outer core that generates the magnetic field, and a thick layer of relatively solid mantle.
       Earth is a terrestrial planet, meaning that it is a rocky body, rather than a gas giant like Jupiter. It is the largest of the four terrestrial planets in size and mass. Of these four planets, Earth also has the highest density, the highest surface gravity, the strongest magnetic field, and fastest rotation, and is probably the only one with active plate tectonics.
       The Earth composed mostly of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace amounts of other elements.
       The interior of the Earth, like that of the other terrestrial planets, is divided into layers by their chemical or physical properties, but unlike the other terrestrial planets, it has a distinct outer and inner core. The outer layer of the Earth is a chemically distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity, and the thickness of the crust varies: averaging 6 km (kilometers) under the oceans and 30-50 km on the continents. The crust and the cold, rigid, top of the upper mantle are collectively known as the lithosphere, and it is of the lithosphere that the tectonic plates are comprised. Beneath the lithosphere is the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at 410 and 660 km below the surface, spanning a transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid outer core lies above a solid inner core. The inner core may rotate at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year.
       The atmosphere is composed 78% nitrogen and 21% oxygen, with trace amounts of water vapor, carbon dioxide and other gaseous molecules. The height of the troposphere varies with latitude, ranging between 8 km at the poles to 17 km at the equator, with some variation resulting from weather and seasonal factors.

MARS

       Mars is the fourth planet from the Sun and the second smallest planet in the Solar System, after Mercury. It is often described as the "Red Planet" because the iron oxide prevalent on its surface gives it a reddish appearance. Mars is a terrestrial planet with a thin atmosphere, having surface features reminiscent both of the impact craters of the Moon and the volcanoes, valleys, deserts, and polar ice caps of Earth. The rotational period and seasonal cycles of Mars are likewise similar to those of Earth, as is the tilt that produces the seasons. Mars is the site of Olympus Mons, the second highest known mountain within the Solar System (the tallest on a planet), and of Valles Marineris, one of the largest canyons.  Mars has two moons, Phobos and Deimos, which are small and irregularly shaped. These may be captured asteroids. Its equatorial radius is equivalent to 0.533 Earths.
       Mars can easily be seen from Earth with the naked eye, as can its reddish coloring. Its apparent magnitude is only surpassed only by Jupiter, Venus, the Moon, and the Sun.
       Mars has approximately half the diameter of Earth. It is less dense than Earth, having about 15% of Earth's volume and 11% of the mass. Its surface area is only slightly less than the total area of Earth’s dry land. While Mars is larger and more massive than Mercury, Mercury has a higher density. This results in the two planets having a nearly identical gravitational pull at the surface – that of Mars is stronger by less than 1%. The red-orange appearance of the Martian surface is caused by iron oxide, more commonly known as hematite, or rust. It can also look butterscotch, and other common surface colors include golden, brown, tan, and greenish, depending on minerals.
       Like Earth, this planet has undergone differentiation, resulting in a dense, metallic core region overlaid by less dense materials. the planet's interior imply a core region consisting primarily of iron and nickel with about 16–17% sulfur. This iron sulfide core is partially fluid, and it has twice the concentration of the lighter elements that exist at Earth's core. The core is surrounded by a silicate mantle that formed many of the tectonic and volcanic features on the planet, but it now appears to be dormant. Besides silicon and oxygen, the most abundant elements in the Martian crust are iron, magnesium, aluminum, calcium, and potassium. The average thickness of the planet's crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi). Earth's crust, averaging 40 km (25 mi), is only one third as thick as Mars's crust, relative to the sizes of the two planets.
      Liquid water cannot exist on the surface of Mars due to low atmospheric pressure, except at the lowest elevations for short periods. The two polar ice caps appear to be made largely of water. The volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 meters.

JUPITER


       Jupiter is the fifth planet from the Sun and the largest planet in the Solar System. It is a gas giant with mass one-thousandth of that of the Sun but is two and a half times the mass of all the other planets in the
Solar System combined. Jupiter is classified as a gas giant along with Saturn, Uranus and Neptune. Together, these four planets are sometimes referred to as the Jovian or outer planets. The planet was known by
astronomers of ancient times. When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, bright enough to cast shadows, and making it on average the third-brightest object in the night sky after the Moon and Venus. Its equatorial radius is equivalent 11.209 Earths.
       Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, although helium only comprises about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other gas giants, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet's shape is that of an oblate spheroid. The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. There are also at least 67 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.
       Jupiter's upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume or fraction of gas molecules. Since a helium atom has about four times as much mass as a hydrogen atom, the composition changes when described as the proportion of mass contributed by different atoms. Thus, the atmosphere is approximately 75% hydrogen and 24% helium by mass, with the remaining one percent of the mass consisting of other elements. The interior contains denser materials such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.
       Jupiter is thought to consist of a dense core with a mixture of elements, a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. Beyond this basic outline, there is still considerable uncertainty. The core is often described as rocky, but its detailed composition is unknown. In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times the Earth's mass or roughly 4%–14% of the total mass of Jupiter. The presence of a core during at least part of Jupiter's history is suggested by models of planetary formation involving initial formation of a rocky or icy core that is massive enough to collect its bulk of hydrogen and helium from the protosolar nebula. Assuming it did exist, it may have shrunk as convection currents of hot liquid metallic hydrogen mixed with the molten core and carried its contents to higher levels in the planetary interior. A core may now be entirely absent, because gravitational measurements are not yet precise enough to rule that possibility out entirely.
      Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, rather than ice as with Saturn's rings. The main ring is probably made of material ejected from the satellites Adrastea and Metis. Material that would normally fall back to the moon is pulled into Jupiter because of its strong gravitational influence. The orbit of the material veers towards Jupiter and new material is added by additional impacts. In a similar way, the moons Thebe and Amalthea probably produce the two distinct components of the dusty gossamer ring. There is also evidence of a rocky ring strung along Amalthea's orbit which may consist of collisional debris from that moon.

SATURN

       Saturn is the sixth planet from the Sun and the second largest planet in the Solar System, after Jupiter.
       Saturn is a gas giant with an average radius about nine times that of Earth. While only one-eighth the average density of Earth, with its larger volume Saturn is just over 95 times more massive.
       Saturn's interior is probably composed of a core of iron, nickel and rock (silicon and oxygen compounds), surrounded by a deep layer of metallic hydrogen, an intermediate layer of liquid hydrogen and liquid helium and an outer gaseous layer. The planet exhibits a pale yellow hue due to ammonia crystals in its upper atmosphere. Electrical current within the metallic hydrogen layer is thought to give rise to Saturn's planetary magnetic field, which is weaker than Earth's magnetic field but has a magnetic moment 580 times that of the Earth due to Saturn's larger body radius. Saturn's magnetic field strength is around one-twentieth the strength of Jupiter's. The outer atmosphere is generally bland and lacking in contrast, although long-lived features can appear. Wind speeds on Saturn can reach 1,800 km/h (500 m/s), faster than on Jupiter, but not as fast as those on Neptune.
       Saturn has a prominent ring system that consists of nine continuous main rings and three discontinuous arcs, composed mostly of ice particles with a smaller amount of rocky debris and dust. Sixty-two known moons orbit the planet; fifty-three are officially named. This does not include the hundreds of "moonlets" comprising the rings. Titan, Saturn's largest and the Solar System's second largest moon is larger than the planet Mercury and is the only moon in the Solar System to retain a substantial atmosphere.
Saturn is classified as a gas giant because the exterior is predominantly composed of gas and it lacks a definite surface, although it may have a solid core. The rotation of the planet causes it to take the shape of an oblate spheroid. Jupiter, Uranus, and Neptune, the other gas giants in the Solar System, are also oblate but to a lesser extent. Saturn is the only planet of the Solar System that is less dense than water—about 30% less.  Jupiter has 318 times the Earth's mass, while Saturn is 95 times the mass of the Earth, Together, Jupiter and Saturn hold 92% of the total planetary mass in the Solar System.
Saturn is termed a gas giant, but it is not entirely gaseous. The planet primarily consists of hydrogen, which becomes a non-ideal liquid when the density is above 0.01 g/cm3. This density is reached at a radius containing 99.9% of Saturn's mass. The temperature, pressure and density inside the planet all rise steadily toward the core, which, in the deeper layers of the planet, cause hydrogen to transition into a metal.
       Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium with trace amounts of various volatiles. This core is similar in composition to the Earth, but more dense. Examination of the gravitational moment of the planet, in combination with physical models of the interior, allowed French astronomers Didier Saumon and Tristan Guillot to place constraints on the mass of the planet's core. In 2004, they estimated that the core must be 9–22 times the mass of the Earth, which corresponds to a diameter of about 25,000 km. This is surrounded by a thicker liquid metallic hydrogen layer, followed by a liquid layer of helium-saturated molecular hydrogen that gradually transitions into gas with increasing altitude. The outermost layer spans 1,000 km and consists of a gaseous atmosphere.
      Saturn has a hot interior, reaching 11,700 °C at the core, and the planet radiates 2.5 times more energy into space than it receives from the Sun.
      The outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium. The proportion of helium is significantly deficient compared to the abundance of this element in the Sun. The total mass of these heavier elements is estimated to be 19–31 times the mass of the Earth, with a significant fraction located in Saturn's core region.
      Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been detected in Saturn's atmosphere. The upper clouds are composed of ammonia crystals, while the lower level clouds appear to consist of either ammonium hydrosulfide or water. Ultraviolet radiation from the Sun causes methane photolysis in the upper atmosphere, leading to a series of hydrocarbon chemical reactions with the resulting products being carried downward by eddies and diffusion. This photochemical cycle is modulated by Saturn's annual seasonal cycle.
      Saturn is probably best known for the system of planetary rings that makes it visually unique.  The rings extend from 6,630 km to 120,700 km above Saturn's equator, average approximately 20 meters in thickness and are composed of 93% water ice with traces of tholin impurities and 7% amorphous carbon. The particles that make up the rings range in size from specks of dust up to 10 m. While the other gas giants also have ring systems, Saturn's is the largest and most visible. Some ice in the central rings comes from the moon Enceladus's ice volcanoes.

URANUS

       Uranus is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. Uranus is similar in composition to Neptune, and both are of different chemical composition to the larger gas giants Jupiter and Saturn. It has a equatorial radius is equivalent 4.007
Earths. Thus, astronomers sometimes place them in a separate category called "ice giants". Uranus's atmosphere, although similar to Jupiter's and Saturn's in its primary composition of hydrogen and helium, contains more "ices", such as water, ammonia, and methane, along with traces of hydrocarbons. It is the coldest planetary atmosphere in the Solar System, with a minimum temperature of 49 K (−224.2 °C), and has a complex, layered cloud structure, with water thought to make up the lowest clouds, and methane the uppermost layer of clouds. In contrast, the interior of Uranus is mainly composed of ices and rock.
       Like the other giant planets, Uranus has a ring system, a magnetosphere, and numerous moons. The Uranian system has a unique configuration among those of the planets because its axis of rotation is tilted sideways, nearly into the plane of its revolution about the Sun. Its north and south poles therefore lie where most other planets have their equators. Terrestrial observers have seen signs of seasonal change and increased weather activity in recent years as Uranus approached its equinox. The wind speeds on Uranus can reach 250 meters per second (900 km/h, 560 mph).
       Uranus's mass is roughly 14.5 times that of the Earth, making it the least massive of the giant planets. Its diameter is slightly larger than Neptune's at roughly four times Earth's. A resulting density of 1.27 g/cm3 makes Uranus the second least dense planet, after Saturn. This value indicates that it is made primarily of various ices, such as water, ammonia, and methane. The total mass of ice in Uranus's interior is not precisely known, because different figures emerge depending on the model chosen; it must be between 9.3 and 13.5 Earth masses. Hydrogen and helium constitute only a small part of the total, with between 0.5 and 1.5 Earth masses. The remainder of the non-ice mass (0.5 to 3.7 Earth masses) is accounted for by rocky material.
       The standard model of Uranus's structure is that it consists of three layers: a rocky (silicate/iron-nickel) core in the center, an icy mantle in the middle and an outer gaseous hydrogen/helium envelope. The core is relatively small, with a mass of only 0.55 Earth masses and a radius less than 20% of Uranus's; the mantle comprises its bulk, with around 13.4 Earth masses, whereas the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20% of Uranus's radius. Uranus's core density is around 9 g/cm3, with a temperature of about 4,726.85 ⁰C (8,540.33 ⁰F). The ice mantle is not in fact composed of ice in the conventional sense, but of a hot and dense fluid consisting of water, ammonia and other volatiles. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean.
        Although there is no well-defined solid surface within Uranus's interior; the outermost part of Uranus's gaseous envelope that is accessible to remote sensing is called its atmosphere. The tenuous corona of the atmosphere extends remarkably over two planetary radii from the nominal surface. The Uranian atmosphere can be divided into three layers: the troposphere, the stratosphere, and the thermosphere/corona extending from 4,000 km to as high as 50,000 km from the surface. There is no mesosphere.
       The rings are composed of extremely dark particles, which vary in size from micrometers to a fraction of a meter. Thirteen distinct rings are presently known, the brightest being the ε ring. All except two rings of Uranus are extremely narrow – they are usually a few kilometers wide. The rings are probably quite young; the dynamics considerations indicate that they did not form with Uranus. The matter in the rings may once have been part of a moon (or moons) that was shattered by high-speed impacts. From numerous pieces of debris that formed as a result of those impacts, only a few particles survived, in a limited number of stable zones corresponding to the locations of present rings

NEPTUNE

       Neptune is the eighth and farthest planet from the Sun in the Solar System. It is the fourth-largest planet by diameter and the third-largest by mass. Among the gaseous planets in the Solar System, Neptune is the densest. Neptune is 17 times the mass of Earth and is slightly more massive than its near-twin Uranus, which is 15 times the mass of Earth but not as dense. Neptune orbits the Sun at an average distance of 30.1 astronomical units.
       Neptune was the first planet found by mathematical prediction rather than by empirical observation. Unexpected changes in the orbit of Uranus led Alexis Bouvard to deduce that its orbit was subject to gravitational perturbation by an unknown planet. Neptune was subsequently observed on 23 September 1846 by Johann Galle within a degree of the position predicted by Urbain Le Verrier, and its largest moon, Triton, was discovered shortly thereafter, though none of the planet's remaining 13 moons were located telescopically until the 20th century.
       Neptune is similar in composition to Uranus, and both have compositions which differ from those of the larger gas giants, Jupiter, and Saturn. Neptune's atmosphere, while similar to Jupiter's and Saturn's in that it is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, contains a higher proportion of "ices" such as water, ammonia, and methane. Astronomers sometimes categorise Uranus and Neptune as "ice giants" to emphasise these distinctions. The interior of Neptune, like that of Uranus, is primarily composed of ices and rock. Perhaps the core has a solid surface, but the temperature would be thousands of degrees and the atmospheric pressure crushing. Traces of methane in the outermost regions in part account for the planet's blue appearance.
       With a mass of 1.0243×1026 kg, Neptune is an intermediate body between Earth and the larger gas giants: its mass is 17 times that of Earth but just 1/19th that of Jupiter. Its surface gravity is surpassed only by Jupiter. Neptune's equatorial radius of 24,764 km is nearly four times that of Earth. Neptune and Uranus are often considered a subclass of gas giant termed "ice giants", due to their smaller size and higher concentrations of volatiles relative to Jupiter and Saturn. In the search for extrasolar planets Neptune has been used as a metonym: discovered bodies of similar mass are often referred to as "Neptunes", just as astronomers refer to various extra-solar bodies as "Jupiters".
       Neptune's internal structure resembles that of Uranus. Increasing concentrations of methane, ammonia and water are found in the lower regions of the atmosphere.
       The mantle is equivalent to 10 to 15 Earth masses and is rich in water, ammonia and methane. As is customary in planetary science, this mixture is referred to as icy even though it is a hot, highly dense fluid. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean. The mantle may consist of a layer of ionic water where the water molecules break down into a soup of hydrogen and oxygen ions, and deeper down superionic water in which the oxygen crystallises but the hydrogen ions float around freely within the oxygen lattice. At a depth of 7000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones. Very-high-pressure experiments at the Lawrence Livermore National Laboratory suggest that the base of the mantle may comprise an ocean of liquid diamond, with floating solid 'diamond-bergs'.
       The core of Neptune is composed of iron, nickel and silicates, with an interior model giving a mass about 1.2 times that of Earth. The pressure at the centre is about twice as high as that at the centre of Earth, and the temperature may be 5,126.85 ºC (9260.33 ºF)
Combined colour and near-infrared image of Neptune, showing bands of methane in its atmosphere, and four of its moons, Proteus, Larissa, Galatea, and Despina.
       At high altitudes, Neptune's atmosphere is 80% hydrogen and 19% helium. A trace amount of methane is also present. Prominent absorption bands of methane occur at wavelengths above 600 nm, in the red and infrared portion of the spectrum. As with Uranus, this absorption of red light by the atmospheric methane is part of what gives Neptune its blue hue, although Neptune's vivid azure differs from Uranus's milder cyan. Since Neptune's atmospheric methane content is similar to that of Uranus, some unknown atmospheric constituent is thought to contribute to Neptune's colour.
      Neptune has a planetary ring system, though one much less substantial than that of Saturn. The rings may consist of ice particles coated with silicates or carbon-based material, which most likely gives them a reddish hue. The three main rings are the narrow Adams Ring, 63,000 km from the centre of Neptune, the Le Verrier Ring, at 53,000 km, and the broader, fainter Galle Ring, at 42,000 km. A faint outward extension to the Le Verrier Ring has been named Lassell; it is bounded at its outer edge by the Arago Ring at 57,000 km.